	Stateless Particle Systems in HLSL with RenderMonkey™

Michael Cann n0355877

Stateless Particle Systems in HLSL with RenderMonkey™
- Michael Cann

- N0355877
Contents Page

Abstract …… 3
Initial Research ………. 3
Stateless Particle System ……………………………………………………………………………………………. 5
Effect01 – Billboard Quad ……………….……………………….…………………………………….. 5
Effect02 – Particle Fountain ………………..………………………….………………………………. 8
Effect03 – Particle Explosion …………………………………………………………………………..11
Effect04 – The Atom ………………………………….…….……….…………………………………… 16
Appendix ……. 22
References ……24
Abstract

Particle effects are everywhere. The movie, TV and games industries make heavy use of particle effects to add realism or simply to impress the audience with explosive visuals. Whether it’s to add smoke to the barrel of the hero’s gun in a movie or have blood spray in every direction from a satisfying kill in a game, particle effects are extensively used.

Until recently, particle effects have been limited to being computed on the Central Processing Unit (CPU) of a computer. Computing particle movements on the CPU is a calculation intensive operation and, as such, often limits the number of particles that can be calculated at any one time.

With the advent of the programmable pipeline on modern Graphics Processing Units (GPUs) a whole host of new opportunities for increasing performance opened up. For the first time particle effects could be totally calculated on the graphics card allowing the CPU to handle other tasks.

This paper is a research into the possibilities of generating particle systems on the GPU and in particular ones that can be generated solely within ATI’s RenderMonkey.

Initial Research

There are two types of particle systems: state preserving particle systems; and stateless particle systems. State preserving particle systems store the positions, velocities and other properties about a particle within memory, then each program loop modifies the properties based on local forces and render. Stateless particle systems are computed from birth to death based on a closed form function, nothing is stored about the particles during each program loop (Latta, 2004).

A stateless particle system cannot react to local forces as it has to exist in a closed form function. This means that there can be no collisions with terrain or other forces. Stateless particle systems are ideal for effects that don’t require interaction with the scene such as effects used in games.
A state preserving particle system cannot be achieved solely within RenderMonkey as it requires some information to be stored about each particle within each loop of the program. An example of a state preserving particle system which is mainly located on the GPU can be found in Lutz Latta’s “Building a Million Particle System” (Latta, 2004). This particle system however relies on the fact that two textures can be saved to memory each iteration of the program and then loaded back into the GPU next loop for modification.
Although RenderMonkey does have render targets, they cannot be preserved from one frame to the next, which means that the state preserving particle system cannot be achieved solely within RenderMonkey. Therefore, for this paper, the stateless particle system is going to be examined rather than the state preserving system.
Future work that isn’t restricted to solely using RenderMonkey should examine the possibilities of state preserving particle systems such as that found in Lutz Latta’s paper.
Stateless Particle System
The following is a report on my exploration into stateless particle systems. Research that was carried out accompanies the report along with screenshots to demonstrate the process.
Effect01 – Billboard Quad
Rendering a single particle to the screen is the most critical part of any particle system and hence was tackled first. There are two common methods of rendering a particle to the screen; billboarding and point sprites.
Billboarding

[image: image1.png]@) DirectX 9.0 Preview: Effect0 -... (=36

Billboarding is a technique where a texture is mapped onto a quad that always faces the camera (Hastings, 2004). The quad is split into two primitive triangles and the texture that represents the particle is split across them. The texture can be any image allowing the particle to take on any representation.
Screen-aligned billboarding is an ideal technique to use for particle effects as the up vector direction actually is irrelevant. Therefore if the camera rotates along the axis it is pointing in, it won’t affect the particle due to its symmetry (Haines, 2002)..
Point Sprites
Billboarding is the most commonly used technique to render particle, however it is not the only one. Additions to OpenGL (SGI, 2004) and DirectX (Microsoft, 2000) have added the ability to render point sprites

Point sprites are created when the GPU renders a texture at the location of a vertex instead of using the vertex for rendering primitives. This is a good method for rendering many particles as it only requires positional computations for a single vertex instead of the usual four.
It has been reported that point sprite rendering is tricky to achieve in HLSL however, there are also reported problems using point sprites with ATI cards (Eldeann, 2004).
For this effect billboarding is used as it is compatible with all shader versions, and there are many examples of how to do billboarding such as the one found in the ‘FlameParticleEffect’ of the particle system example included with RenderMonkey. Should there be time at the end of the project then point sprite rendering will be examined.

In order to make a quad face the camera, the position has to be multiplied by the camera matrix. This forces the world space coordinates of each vertex to be aligned with the camera (Hastings, 2004). The code that performs this process can be found in appendix 1.

Once the vertex shader that aligned the quad to the screen was constructed, a simple pixel shader was written so that the quad could be viewed on the screen. Taking no parameters and only outputting a single colour the pixel shader was written for simplicity. Figure 1 below demonstrates the RenderMonkey output:
[image: image12.png]

Figure 1. A screen-aligned quad with simple flat shading
The final step for the effect was to create a texture and render it on quad instead of the flat shading. The particle texture was created using Adobe Photoshop (Adobe, 2006) and was easily mapped to the screen aligned quad resulting in the below figure:
[image: image2.png]

Figure 2. A screen-aligned quad with texture applied

This effect demonstrates the technique for rendering a single particle to the screen so that it always faces the camera. The next series of effects will take what was learned here and developed to create more complicated effects involving many particles.
Effect02 – Particle Fountain

The first particle effect attempted that involved more than one particle was a particle fountain. From previous experience it was know that this particular effect was fairly simple to create. Previous particle fountains that had been created used a state-preserving particle system, however this system is a stateless particle system and as such it was a new experience.

The intended effect was to have particles spray up from a point then slowly fall to the ground under gravity. The ‘Flame Effect’ , part of the ‘Particle System’ example that comes with RenderMonkey, has a similar effect showing particles shoot up in the air but not fall to the ground. Due to the similarity of the desired effects, the RenderMonkey example was first studied to deduce how it worked.
In the first effect a single screen-aligned quad was used to render a single particle to the screen. For this effect, however, many quads are needed to represent many particles. The flame example also required such an effect and included a model named “Quad-Array.3ds”. This model is the same as the single quad except there are 100 quads instead of 1. Each quad is given a consecutive Z value so that they can be distinguished from each other. The figure 3 below demonstrates this:
[image: image3.png]

Figure 3. Incremental Z order of QuadArray.3ds

Once it was understood how multiple particles were to be structured, the motion of the particles was tackled. The usual process in a state-preserving particle system is to store all the particles’ positions and velocities in large array, then on each program cycle apply acceleration and other forces to the velocity, apply velocity to the position, and finally render the particle. In a stateless particle system, however, no particle data is stored and hence the same process cannot be applied.
Stateless particle systems work by calculating the position of each particle on each render based on a fixed form function in the vertex shader (Latta L., 2004). It was also known that Newton’s laws of motions concern stateless systems. Therefore using one of the derivations of Newton’s equations of motion, the position at any given time can be calculated so long as the initial velocity, the acceleration and the current time is known (Unknown Wikipedia Author, 2006).

The selected equation of motion was:
S = UT+AT2/2.

Where:

S = the position

U = the starting velocity

T = the time

A = the acceleration (gravity)
The time parameter is provided by RenderMonkey as a float variable that counts up in seconds from 0. If this value was used directly in the above equation the particles would fountain up from the centre and then fall under the power of gravity as predicted by the equation of motion. However, as time increased, the particles would continue to fall with increasing velocity forever. To stop this from happening the particles required a maximum age that would prevent them from falling any further. The fire example provided with RenderMonkey also required this feature and provided this solution:
// Clamp time to a range

T = frac(In.Pos.z + systemSpeed * time_0_X);
The formula takes the Z position of the vertex (which is unique for each quad, or particle) and combines it with the current time and gets the fractional part of the resulting value. The result is a time that is unique for each quad which repeats when the fractional part is greater than 9. Once this was applied the particle fountain effect was complete. A screenshot of the result can be seen in figure 4 below:
[image: image4.png]

Figure 4 - The resulting particle effect
Effect03 – Particle Explosion
The intention for this effect was to take what was learnt in the first and second effects and then build on them to create a different but popular particle effect. The particle explosion is a very common effect and is used in everything from simulating fireworks to nuclear bombs and is an essential feature of most modern computer games today.

In a particle explosion, particles start off at a central point then are exploded outward in all directions. As the effect progresses, the particles slow down due to wind resistance and eventually stop. For this third effect it is intended that as the particles slow down and stop they will also fade out to increase realism. Once the particles have come to a complete stop the effect repeats.
The first step in creating a particle explosion is to decide on a method for describing the motion of the particles. Initially Newton’s laws of motion seemed to be the correct solution for this effect. In the previous effect the code that was used to calculate position of each particle using Newton’s laws of motion was:
 pos.y += U.y*T+AT;

 pos.x += U.x*T;

 pos.z += U.z*T;

The acceleration caused by gravity was only applied to the Y component of the position, and hence the particles would fall only in the Y direction. Therefore it was reasoned that to make the particles feel the affects of ‘air resistance’, or to slow down, then a deceleration force should be applied in all three directions like so:

 pos.y += U.y*T+AT;
 pos.x += U.x*T +AT;
 pos.z += U.z*T+AT;
When the above code was implemented however, instead of the intended explosion, the particles simply bunched together and moved towards the camera, to the left and down. Upon closer inspection the reason became obvious. As the acceleration is applied to each axis in the direction of the axis, the particles would all move in the same direction at the same time. What was actually required was the deceleration effect to be applied not along each axis but actually towards the centre of the explosion so that all the particles came to a smooth and gentle stop. This required a different deceleration force for each particle in a direction determined by its initial velocity.
The solution that was devised was to have each particle move out from the centre of the explosion by a decreasing amount, until the particle stops moving altogether. To achieve this, a factor was introduced that was multiplied by the initial speed multiplied by time. This factor started as a large number then as time progressed it gradually neared 1. The result being, the particles exploded out with a fast speed and gradually came to a stop.

The resulting equation is:
S = (U*T)*(length of explosion – T/2);
Once the correct motion had been accomplished the effect needed a timing function to make it repeat. To achieve this the previous time clamping method couldn’t be used as it didn’t take into account a value to determine the length of the effect:
// Clamp time to a range

T = frac(In.Pos.z + systemSpeed * time_0_X);
The above time function also gave a different time for each particle as the In.Pos.z was used in the calculation. This was required in the previous effect as each particle was emitted at a different time so that it would seem like a continuous stream of particles. For the explosion however, all the particles needed to be emitted at the same time. Below is the time loop function devised to solve these problems:
// Clamp time to a range defined by the length of the effect

int tempT = time_0_X/effectLength;

T = time_0_X-(tempT*effectLength);
Once all these features were in place the particle effect was run and the effect below was observed:

[image: image5.png]

Figure 5 – The explosion effect

It worked, however one problem still remained. When the particles exploded out, the resulting pattern was a cube. Figure 5 is only 2D but the square effect can easily be seen. The reason for this was the way the particles were assigned their initial velocities:

 U.x = sin(73 * In.Pos.z)*particleSpeed;

 U.y = cos(123 * In.Pos.z)*particleSpeed;

 U.z = sin(69 * In.Pos.z)*particleSpeed;
Because the initial velocities were based on using sin and cos the maximum values that they could ever be was restricted to the range -1 and 1, hence generating a random cube-like pattern. A new method was needed so that a more spherical pattern was generated:
 // limiting the minimum distance a particle can be from the centre

 float timesBy = In.Pos.z;

 if (timesBy<0.9){timesBy=0.9;}

 // forcing the particles into a spherical shape

 U = normalize(U);

 U *= timesBy*10;

By normalising the initial velocity vector for each particle, only the direction of the initial velocity was achieved. Normalising a vector produces a vector with unit length, therefore all the velocities now had the same length but pointing in different directions, hence, a spherical distribution. The spherical distribution was initially too perfect, however, and a multiplying factor based on the Z position was introduced to randomise the spherical distribution a little. The result was a spherical distribution of the particles with a little randomness so that the explosion isn’t too perfect. See figure 6 below for a screenshot of this.
[image: image6.png]

Figure 6 – The particle explosion

The final part of the effect required the particles to fade as they slow down and eventually stop. The pixel shader was the place to create this required effect as it deals with the colour of the particles rather than their positions.

Because the particles start off fully opaque at their birth and are fully transparent at their death, a ratio of the current time compared to the length of the effect was created so that the particle could fade by the correct amount. The value defining how transparent the particle is falls within the range [0..1] therefore the code used to generate the ratio is as follows:

float ratio = 1/effectLength;
The above ratio was then multiplied by the effect length minus the time, giving the current transparency level the particle should be. That value was then multiplied by the pixel shaders output colour to arrive at the final colour for that pixel:

// Modify the output colour so that it apears more faded over time

float4 outColour = tex2D(Texture, In.texCoord);

outColour *= ratio*(effectLength-T);
The final result for this effect can be seen below in figure 7:

[image: image7.png]DirectX 9.0 Preview: Effect3 - P... (=)0

Figure 7 – Particle explosion with fade
Effect04 – The Atom
The intention of this effect was to simulate the structure of an atom. An atom consists of two components, a nucleus and an electron cloud that surrounds the nucleus. For this effect the nucleus is to be rendered with lighting and specular highlighting. A number of particles orbit the nucleus to represent the electron cloud. Due to the fast motion of the particles a motion blur effect is to be applied to the particles.
The first part tackled in this effect was the motion of the particles about the nucleus.

Electrons orbit a nucleus in concentric rings, therefore the individual particles had to orbit within their own rings about the nucleus. Do to do this firstly a method of making circular motion was required.
It was known that applying sin to the x position and cos to the y or applying cos to the x position and sin the y achieved circular motion so long as the same value is used for both. HLSL supports sin and cos therefore it was a simple matter to code the following to calculate the position:

 pos.x += sin(T*4)*50;

 pos.y += cos(T*4)*50;
For this effect T is simply the incremental time that RenderMonkey passes into the effect as a float. The effect does not need to loop itself therefore there is no need for an effect loop variable nor a fractional time function. The result of the above can be seen below in figure 8.

[image: image8.png]) DirectX 9.0 Preview: Effect0 -

Figure 8 – Particles bunched together moving in a circle

As figure 8 shows, the particles are bunched together, but what is not evident from the figure is that the particles are moving in a circular pattern. The bunching of the particles is expected as they are all moving to the same position based on the same time function. To resolve this problem the particles need to move in multiple rings in multiple dimensions using different time functions.

Particles were split into groups giving different movement paths to each group. A listing of this code can be found in appendix 2 at the back of this document. Once that was complete the effect looked like figure 9 where groups of particles followed their own ring about a centre point.
[image: image9.png]

Figure 9 – Particles grouped together follow different paths

The next step was to add motion blur to the fast moving particles. The traditional method of motion blurring an effect is to use multiple passes of the scene and the scale the opacity of each render to create a faded blurred effect.

The solution devised for this effect however was much simpler. As the effect stands (as demonstrated in figure 9) there are 5 groups of particles that follow their own concentric ring path about a centre point. The code (listed in appendix 2 at the back of this document) splits the particles up into these groups with 20 particles in each group.
It was reasoned that if the 20 particles in each group were sequenced so they were each a little out of phase then the result would be 20 particles that appear to follow a path about a centre point one after each other. This was implemented simply by giving the particles a slightly out of phase time value:

 // Particles given slightly different times

 T = time_0_X-In.Pos.z*2;

The last step in creating the motion blur effect was to fade the particles one after each other in the group. This simply involved calculating an alpha value from each particle’s index position in the path then passing that to the pixel shader where it would be applied to the individual particles. The code that calculates the alpha values for each particle can be seen in appendix 3 at the back of this document. The resulting motion blur can be seen in figure 10.

[image: image10.png]

Figure 10 – Shows the motion blur on the electrons
The second part of the effect involved adding the nucleus so that the electrons have something to orbit around. A nucleus is made up of two particles, protons and neutrons that form a tightly bunched package. Unfortunately RenderMonkey doesn’t supply an atomic nucleus in its library, so one was created by hand in 3DStudio Max and then imported.

The rendering of the nucleus was performed on a separate pass rendered using diffuse and specular lighting terms. Diffuse and specular lighting is very simple to implement in RenderMonkey and is used in many of the examples that come with the program. Using the normals from the model and light vector the correct shading for the diffuse terms is easily calculated in the pixel shader:
 // Basic diffuse lighting

 float diffuse = dot(lVec, In.normal);
The specular term is a little more complicated and requires an eye vector so that the ‘shiney patch’ can be correctly position on the model. For this effect the eye vector is simply calculated by subtracting the nucleus’s position from the camera’s view vector in the vertex shader:

 // View vector for specular lighting

 Out. eyeVec= view_position - In.Pos;
Once calculated, the eye vector is passed to the pixel shader where it is used to apply the specular term:

 // Basic specular lighting

 float specular = pow(saturate(dot(reflect(-normalize(In.eyeVec), In.normal), lVec)), 8);
The above specular and diffuse calculations were taken from the pass that rendered the ball in the ‘bounce’ effect that comes with RenderMonkey.
Getting the correct colour of the protons and neutrons was a challenge. Due to the fact that the .3ds format only stores geometrical data and texture data but not vertex colour data a different format had to be used so that the vertex colour could be exported from 3DSMax then extracted and used in RenderMokey. RenderMonkey also supports Microsoft’s .x format and the Panda plugin for 3DS Max allows models to be exported in the .x format (PandaSoft, 2006).
Once the model was exported from 3DS Max it was then imported into RenderMonkey. Using a new mesh mapping channel ‘COLOR’ it was passed from the vertex shader to the pixel shader where it was applied to the individual pixels in conjunction with the diffuse and the specular lighting terms. The end result of the entire effect can be seen in figure 11 below.
[image: image11.png]) Direct 9.0 Preview: Effecto4 - The Atom effect

Figure 11 – The nucleus and electrons together

Appendix
Appendix 1 - Billbording

// The output

 VS_OUTPUT Out;

 float3 pos;

 // Billboard the quads.

 // The view matrix gives us our right and up vectors.

 pos = particleSize * (In.Pos.x * view_matrix[0] + In.Pos.y * view_matrix[1]);

 Out.Pos = mul(view_proj_matrix, float4(pos, 1));
Appendix 2 – Particle movement

if (In.Pos.z<0.2)

 {

 pos.x += (sin(T*particleSpeed))*electronRadius;

 pos.y += (cos(T*particleSpeed))*electronRadius;

 }

 else if (In.Pos.z<0.4)

 {

 pos.y += (sin(T*particleSpeed))*electronRadius;

 pos.z += (cos(T*particleSpeed))*electronRadius;

 }

 else if (In.Pos.z<0.6)

 {

 pos.x += (sin(T*particleSpeed)*0.7)*electronRadius;

 pos.y += (sin(T*particleSpeed)*0.7)*electronRadius;

 pos.z += (cos(T*particleSpeed)*0.7)*electronRadius;

 }

 else if (In.Pos.z<0.8)

 {

 pos.x += (cos(T*particleSpeed)*0.7)*electronRadius;

 pos.y += (sin(T*particleSpeed)*0.7)*electronRadius;

 pos.z += (cos(T*particleSpeed)*0.7)*electronRadius;

 }

 else

 {

 pos.x += (cos(T*particleSpeed))*electronRadius;

 pos.z += (sin(T*particleSpeed))*electronRadius;

 }
References

Adobe (2006) Adobe Photoshop [online] Available at: <http://www.adobe.com/products/photoshop/> [Accessed 26th November 2006]

Eldeann (2004) HLSL Particles System [online] Available at: <http://eldeann7.chez-alice.fr/HLSL_particles/index.htm> [Accessed 26th November 2006]
Haines E., Möller T. (2002) Real-Time Rendering AK Peters Ltd.
Hastings, E (2004) Optimizing Real Time 3D Particle Systems [online] Available at: <http://www.cs.ucf.edu/~hastings/papers/RealTime3DParticleSystems.zip> [Accessed 30th October 2006]
Kipfer P., Segal M. Westermann R. (2004) UberFlow: A GPU-Based Particle Engine [online] Available at: <http://ati.amd.com/developer/Eurographics/Kipfer04_UberFlow_eghw.pdf> [Accessed 26th November 2006]

Latta, L. (2004) Building a Million Particle System [online] Available at: <http://www.2ld.de/gdc2004/MegaParticlesPaper.pdf> [Accessed 30th October 2006]
Microsoft (2000), Introduction to DirectX 8.0 [online] Available at <http://msdn2.microsoft.com/en-gb/library/ms810496.aspx> [Accessed 26th November 2006]

PandaSoft (2006) Panda DirectX Exporter [online] Available at: <http://www.andytather.co.uk/Panda/directxmax.aspx> [Accessed 26th November 2006]

SGI (2004) OpenGL 2.0 [online] Available at: <http://www.sgi.com/company_info/newsroom/press_releases/2004/august/opengl.html> [Accessed 26th November 2006]
Unknown Wikipedia Author (2006) Equations of Motion [online] Available at: <http://en.wikipedia.org/wiki/Equations_of_motion> [Accessed 26th November 2006]
	2 of 25

